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The minimx problem of correction for a linearized model of controllable per- 
turbed motion is considered on the assumption that the available informa~on 

is restricted to the me~urement of the function of the coordinate system [l-S]. 
Solution of this problem -based on methods of minimax quadratic filtration 
[‘i’] and optimal control with incomplete data [S] -is brought to a form suit- 

able for computer calculations. 

1, Statement of the problem. Let there be given an n -vector cont- 
rollable system and an m -vector measurement system 

3’ @I = A (Qs (t) + B (t)u + c (t) u, GJ-6dtq6, s>o (l*lf 
Y (t) = G ($1 3 0) + E (1.2) 

where A (Q, B (t), C (t> and G (t) are known continuous matrices of related di- 

mensions, and u = u (t) is a q -vector control subject to restriction 

<u’ (-10 (*> u (.>Y Q f-&s, 
(1.3) 

Q’ (t) = Q (t) > 0 

((f( ‘)Y = s; f(S) ds) 
fo--S 

where Q (t) is a continuous and positive definite 4 X Q matrix, and the prime 

denotes transposition, 
Here and below the symbol (. )f denotes the integral taken over the segment 

ft, - 6, tf of the related vector or scalar ~tegrand~ as is made clear in 

parentheses in (1.3). When the segment of integration It. 71 diffa from f t, 

--6, tl we write ( * )t’. All considerations in this paper that differ from fin- 

ite-dimensional are carried out in spaces that are summable with the square of func- 
tions which may, possibly, have different metrics. This aspect will not be specifical- 

ly mentioned below. 
It is assumed that the intermediate perturbations u (n >, and ri, ( e) in systems 

(1.1) and (1.2) are subject to constraints.. 

I8 tu (*>, E (*I> = (0’ (*) J-Z (*) 7.J (‘) + y f*) H (.> 5 (*)>@ < v2 G4) 

R’ (t) = R (Q > 0, H’(t) =rr@)>e 

434 
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Symbols ft( -) =df (0 1 t) are used when it is necessary to emphasize that func- 
tion f = f fr), t, - 6 < %go is considered along segments it, - 

6, tl and ‘It, al e resp@tively. 
Definitions. The totality of those and only those vectors z = 5 (t) which 

are the ends of trajectories of system (1.1) and which, by virtue of (1. Z), generate the 
required signal Y* (4, t, - 6 < ‘G < t by the specified control U* (2) s 0, 

r<t under constraints (3.4) on the indetermined ~r~rbations will be called 
informati~ set X* (t) = X (E, y* (.)) , 

Note that, generally speaking, vector 2 E X* (t) may be realized not only in 
the presence of the unique perturbations ZQ* (s), Et* (s), The totality of all poss- 
ible functions (ut* (.), Et* (s)}, which by virtue of system (1.1) and (1.2) gener- 
ate signal gr* (.) and vector 5 will be denoted by the symbol w (y,* 
(s), z). Let us determine the ~antity 

v2 tYf*(.), 4 ==$ P (n (*), E(a)), {u (*), E (a)} E 
(1.5) 

w(!/t*(.), 4 .’ . 

and consider the constraints 

We introduce in the analysis the set 

X~{~~*~~)~X*(~))= lJ(W, ~8, u(+))jz~X*(t)} 
(1.7) 

where G is the region of attainability [l] of system (1.1) from the state t = 
5 (t) at iustant 6 over all possible u (.I t) that are subjected to the constraint 

(1.6) when g (. f t) = 0 with fixed control u (. It) f U (t). Here and be- 
low U (t) denotes the set of functions {u(. 1 ~)}subjected to constraint 

Definition 1. 2. The totality of those and only those functions YT (4 
which coincide with signal &* (s) when s < t , and for s > t are gen- 
erated by virtue of systems (1.1) and (1.2) (when 

2, u (* IO, E W), 

u (. 1 t) = Of by some quantities 
where z G X*(t) and u (~1 t), E (-1 Qare subject 

to constraints (1.6), will be called the set of admissible continuations Y (% 
yt* (.))of signal yt*(.). 

The signal y,* (.) realized at instant t \( 6 is to be understood as the 
position of system (I* 1) (when ut (s) = 0). 

Definition 1.3. We call strategy of correction uk t= uk (Yt* (*)I the 

rule by which at each known position of yt* (*) only one of the following so- 
lutions is acceptable: 

a) continue the observation process with zero control in system (1.1) or 



bf discontinue observation and pass in system ff, 1) to programmed control 
its (. 1 t) E flf (t) dictated by strategy for the ~~rna~~~~~ time intervaf, 

Acceptance of the process of solution by strategy U8 begins at instant of time t, 
Thus, according to Definition 1.3 for each signal y* ( l ) E Y (6, yia* (-)) 

and the chosen strategy ?7, there exists a uniquely defined instant of time zy; = Z, 
(si* (-), 0,) E I;k,, @I and the corresponding position of ‘&*” f *) in which 
strategy u, begins to operate to solution b), The indicated instant =Q is, obviously, 
one and tie same for a14. y (-1 E Y (et gTe* (+f). 

Let there be specified the functional r_f, (x) determined on compact sets X c R” 
by the condition 

di, (X) = rnxx (9 fDx) f z E X) IL91 

is called the assured result of strategy VI;” . It is shown below that an optimal strategy 
Uku that entails ~~e~~al~~~ {I. 12) and (1,13) can be always derived. 

Note that condition (1,13) considered for I f = +Q implies thr: equagty 

I- (Y* (+I, tJ,“l = ucyiT, Y (a f. I T& YF** (-)) 
cb15) 

2. An a posteriori estimate of the state and the pragram- 
mcd coPtral with incomplete data, We shall present an analytical descripl 
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tiar of the ~f~a~~ set X* (t) on the assumption that system (1.1) (n (*I*= 
V (*) = 0) is entirelv observable by signal (1.2) (E ( .) -_ 0) along any 

segment [tl, &I cl [to - 6, 61. Such assumption is in .turn equivalent to complete 
controllability of the system 

a* zz - sA (t) + h’ (t).G (t), to - 6 < t G + (2.1) 

which is conjugate of (1.1). 
We in~~uce the operator 

J’h(r) =G(T)(S(., T) C(a) R-l(.) C’(s) S’ (s; h(e))),‘+ (2*2) 

H-l (‘6) h (t), t, - 6 < ‘G < t 

where S (t, I$ is the fundamental matrix of the conjugate system (2.1) and s (.t; 

h (s)) is the solution of system (2.1) with the initial condition s (to - 8; A(.)) = 0. 

It is not difficult to veriiy that Jf is a linear self-conjugate and strictly positive-defi- 

nite (coercitive) operator that ~~forrns the space of n -vector functions, which are 

summable with their square along segment [t, - 6, t] , into itself. It follows from 
the theory of functional analysis [9] that J’ has a bounded inverse operator and, con- 

;;;Ie;ty;hat the equation J$,, (.) = p ( . ) is uniquay solvable for any right-hand 

- * 
We introduce the new scalar product of functions on the assumption that 

[A (-1, P (*)I’ = 0~’ (‘e) J*pt(-) >$ 
(2.3) 

Let f* (t, .) and F (t, .) be solutions of equations 

J’f* (t, a) = at* (~1, Jt F (t,. .) = G (.) S (t, a) 
(2.4) 

where !A* (*) is the position obtaining at instant t > to. In the second equ- 
ality of (2.4) F (t, .> is an 
(t, +)lare solutions of equations 

m X n-matrix function whose column fi 

J’f”(t, -) = gi(t, .), i=f, . . . . n 

where & (t, *> ace columns of matrix G (.) S (t, .), 
The following statement is valid [‘7]. 

Lemma 2. 1. The inclusion SC+? x (t, I.!* (*I> is equivalent to the inequ- 
ality 

(z - 50 (t))’ P @f (z - (t)) \< v2 - ha (t) 

P (t) = W’ (t, .), F (t, .)I* 

ha (t) = (t, .), f* (t, *>I’ - x0’ (t) P (t) x0(t) 

(2.5) 

(2.6) 

where x0 (t) is a vector determined by formula 

go (t) = P-1 (t) d(t), dr (tj = if* ft, .I, F ft, q’ = s ft; f* (t, .)I (2.7) 



The confirmation of Lemma 2.1 arises from the following results. 
Lemma 2,2 Uf all firnctiom Uf (e), g* (*) which satisfy (almost everywhere 

m ft, - 6, t] ) the identity 
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We pass to the solution of the problem of guidance ~rog~amm~g* in other words of 
finding a control IS* (Tjll t, < d < t < 6 such tlIaat 

main (Y (u (-); yt* (v)) 1 u (1) E U (it)} = CD0 (yt* (0)) ‘2’18’ 
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B tt; 1) i.e. the smallest closed concave function which majorizes g (t; I) 
The following statement is valid. 

Theorem 2.1 The optimal control 

ts and satisfies the principle of minimum 

(S (.; 2”) B (.) u” (.)h” = min {<s(-; 

u (0) 

u” t-1 in problem (2.16) always exis- 

(2.21) 

where I?” is the extreme element in problem (2.19). 
Using condi;.ion (2.21) we obtain the optimum control 

u” (7) G - @-’ (r) B’ (‘6) s’ (T; I”) (p (t; 1”))~“2 
(2.22) 

if B (t; 1”) # 0. 
One of the difficulties of solving problem (2.16) is the determination of the quan- 

tity (cone g) (t; 0. Only in certain cases is it possible to obtain the upper envel- 
ope of function g (t; Z) in explicit form. Let, for instance, function cp (.) be an 
Euclidean norm, It is then possible to show that 

(cone g) (t; 1) = (v” - hZ (t)p (no2 (t) (1 - Z’Z) + 

1’ P, (t) zp, 1’1 < 1 

where n,,a (t) is the highest eigenvalue of matrix 

P, (t) = (DS (., 6) C (.) R-l (.) C’(e) S’ (a, 6) D/ha+ 
DS (t, 6) P-l (t) S (t, 6) D’ 

In that case formula (2.19) assumes the form 

r* (t) = CD” (yt* (-)) = max {s(t; Z) TI (t) - 
(2.23) 

p (p (t; z>p + (v” - y(t)p (n; (t) (1 - Z’Z) + I’ P, (t)z)q 

3. Solution of the problem of correction. Let us revert to the 
problem formulated in Sect. 1. We assume that function 9 (.) (see (1.9)) is an Euclid- 
ean norm. 

Let at instant t > t, position l/r* (*) be realized. In that position it is 

possible to obtain, in spite of the assured result r* (t) (2.23), one more number 

r* (r, t) = max {@” (IA (.)).IY~ (e) E Y (.t, it* (.))J, Tat 
(3.1) 

which defines the prediction of the assured result of control on the basis of information 
obtained by instant t. Calculating, first, r* (7, t) for all 7 GFZ [t, S], we can 

finally obtain 

r*’ (t) = min {r* (7, t) 1 t < x < 6) (3.2) 

and compare this quantity with r* (t). 
We form the equation 
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r* (t) - r*O (t) = 0, t > to (3.31 

We call the strategy of correction Uke extremal, if as the instant T* = 7* 
(Y* (.), Uke) of observation termination for each of signals Y* (.) E y (6 

YlO* (*>) we take the smallest root of Eq. (3.3), and select function (Z.&J 
as the control uk (. 1 z,) impa;ed by strategy on segment !z*, Sl . The fol- 
lowing statement is valid. 

Theorem 3.1, The extremal strategy Uke is optimal and assures the 
result 

r (Y* (a), Uke) = a0 (Y,,* (*)I = r* (r,) = i+.*O (%*I < r” = 
(3.4) 

r*o (to)* ‘tr y* (*I C?Z y (6, YtO* (-1) 

Pr oaf. The validity of the theorem follows from the definition of strategy Uke, 

formulas (3.1) and (3.2) and the inequality 0’ (yt* (-)I > r* (G)~ vt G [to, Cd. This 
inequality follows in turn from that the assumption 

min IQ0 (R* (-1) I t = Ito, z,)l = r* (tl) d r* (T*) 

where tl < T*, contradicts condition r* (tJ > r*’ (tl) which is satisfied in con- 
formity with the de~~ti~ of strategy Uke. The ~urnp~on that r* (“G*f > rlLo (to) 
also leads to a con~a~ction, since then at some instant t1 G [to,@] we have r* 

{z*) > r*“ (to) = r* (t’, td , which is impossible. 
Note that the estimate l;hO (to) assured by strategy Utie cannot be improved 

in the sense that for any instant t1 e [t,, fi] signal yt* (.) E y (t, Ytp* (.)> for 
which 

r* (t) = @” (Yt* (*>) = r* (4 CJ > r*O (t,) 

can be obtained, 
The last inequality means that, having observed signal Y* (7) up to instant t, 

no selection of programed control u (*I G E u (8) in tb.e problem considered, 
can yield a better result than r*’ (to) ( r* (t,,). 

We thus find that the instant z* = 1;* (y* (-), U,“) of observation t~mination 
is determined by continuous observation of signal Y* (t), calculation of paramet- 
ers of the information set x* (Q, and also by me continuous computation of num- 
bers r* (9 (2.23) and r*” ($) (3.2). However the assured results r*’ (to) may 
be always derived by simpler procedures. 

In fact, if r*O (to) = r* (to), it is no longer necessary to continue observa- 
tion. If, however, r+,O (to) < r* (to), it is possible to carry out at once observa- 
tion up to the instant 

tL = max {t 1 r* (t, to) = ‘;p” (to)} > t, (3.5) 

Then along segment [to, $11 a signal which may not be the worst for the ob- 
server may be realized, and we can repeat the prediction procedure by comparing the 
numbers r*;*O (tl) and r* (8 < r$ (t) , etc. until equality (3.3) is achiev- 
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ed. In the latter case further o~e~a~o~ is u~~ec~sary~ and the programmed control 
(2.22) is to be applied on segment ft, @j 

It should be emphasized the described procedure for the determination of solution 

is, first of all, aimed at obtaining the assured resu1.t r,o (t,) while the extremal &at- 
egY uke makes it possible to exploit to the highest degree the unsuccessful from the 
adversary’s point of view choice of signal 
forest passible value of the quantity 

y* (.) e Y (@, yto* (.)) and obtain the 

a* t?k$ f-1) = u’ W f.1 ‘t+I; &* I*)) 

To make the reasoning in Sect, 3 completely strict we shall. show the attainability 
of maximum in 13.2) and caiculate that maximum. We revert to Pqs. (2. Q)-(z,14) 
which define the dynamics of variation of set X* (9. 
f%) = p-’ (&I) d f&), h* (&j 

The initial conditions x0 
for Eqs, f2.13) and (2.14) are obtained from obser- 

vation of signal (1.2) off the initial segment It, - 6, t,i it Ml be readily se- 
en that the evo~t~o~ of these ~an~~~ is uniqnefy determined by s~c~~~ng function 
ft* (& Let us consider the set of all uncool {rX (.>) specified on segment 

Et, ,I, d > g, and subjected to the constraint 

<!I’ (W-l (‘1 f1 (*I); < y2 - K (t} 
(3.6) 

where h’ (t) is determined by formulas [Z. 13) and {2.15), 
L e m m a 3. 1. S&nal II+ ( - )is an admissible continuation of signal yt* f l > 

i*@*& (-1 c2 Y@, yt* ~*~~~, if and anIy if there ex&& function fz ( 8 > that sat- 

isfies the ~equa~~ (3.6) and such that 

yr (CX) =I G (ct) x0 (a) + H-l (a) fx (a), t Bad” ‘307’ 

witi known initial conditions 26 W = P-1 ($1 d ft)* 

Proof. From (3. ‘7) and (3.8) we have 

Y, (o) = G (a) s (z, a) zo (T) - <G (a) 8 (a, u) p-l (*) G’ (‘) f1 (*))a’+ ‘3.3) 

H-’ (a) f1 (a), ro - 6 < e <z 

and when o f t function g, (a) is the same as the obtained sign& Y* (a) . Using 
Lemma ~2 and f~~ulas (2,8)-f2.14) we conclude from this that signal E3.9) and vec- 
tor zo (z) can be actually obtained in the system fl. 11, (S2), f@r instance, in the 
presence of perturbations + (. ), g,l(. ) indicated in Lemma 2.2 where t = z and 
function b (z, .) are the solution of equation 

J”$ b (7, *f = II+ (‘1 -G (*) S CT**) Gl @z) 

Hence, if the c~~u~tion of signal Yt* (*) is specified by formulas @. 7) and 
f3.3), such continuation is adrnis~~b~e. The converse assertion of the lemma 1s evident. 
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It follows from Lemma 3.1 that there exists a one-to-one correspondence between 

signal !k (*) E Y (z, y,* (-)I and functions fI (a), I < CL < a . Taking 
this and (2.23) into account, we rewrite formula (3.1) in the form 

(3.10) 

Using a formula analogous to the finite dimensional equality (2.19) we obtain 

(3.11) 

b” - ~z(t)~‘~ (3x0” {T) (1 - Z’Z) + Z’P1 (a} z + (s (a; Z) P-l{ 0) x 
G' (-) H (b) G (e) P-l (-) s’ (-; Z)),‘)“+ 

The expression in (3.10) has obviously a maximum with respect to f~ (*). , which 
shows that maximum is attainable in (3.1). Formula (3. ll) shows that function r* 

(“6, t) is continuous with respect to variables 2, t (to < t < ‘t \< fb)). 
Thus the procedure of acceptance of solution of extremal strategy Use reduces 

to the following sequence of operations which must be continuous in time. 

1’. determination of parameters of ellipsoid X* (t), i. e. of quantities I’-’ f% 
x0 (t) and hz (t), by solving the related differential equations (2. lo), (2.11) and (2. 

13). 
2.. Calculation of the quantities r* (t) , r* (7, t) and r;L” (t) by formulas 

(2.23), (3.11) and (3.2) respectively, 

(tj? 
Determination of the minimum root of Eq. (3.3) by comparing r* (t) and r*O 

In practice the described procedure is realized on a computer in the form of a dis- 

crete scheme with a small time step. 

4. Exam p 1 e. Let us consider a one-dimensional system whose state 5 (b) 
is measured under conditions of some interference 

x*= us. v, -6dt66, 6>0 
(4.1) 

Y (tj = ZJ (t)+ “, (4.2) 

Per~rbations ~1 (*j, g (*j and the control u (.) are constructed by (4.3) and con- 
dition (4.4) respectiveiy, 8 

s (v2 (8) + E2 (sjj ds d y2 (4.3) 

-8 

a 

s 
us(s) ds 5 Ps (4.4) 

-8 



In this example Eqs, @.9)-(2.14) assume the form 

p’ (9 = 1 - p2, p (-8) = 0 

d’ (4 = --p (t) d (t) + y* (t), d (4) = 0 

dh2 (t)w = jr”2 (t), fl* (t) ^- y” (t) - 50 (t), 1”62 (-4) = 0 

50’ (6 = P-’ (0 A* (9, 50 ft) = p-l (t) d (t) 

From this we find that p (2) = th (t -j- 6). In this case formulas (2,23) and (3.11) 
are of the form 

r* (t) = CD” (yt*(- )) = max { I x0 (5) 1 - p (6 - t)“z, 0) + (y2 - (4.6) 

I&))‘/” (& - t + p-f (t))“” 

T*~z, e) = max x 
Ilf ztr 

{Zq(t) -p 1 1 1 (&--z)“‘“+ (v”- h.2 (t))‘“( 6 - z + p-1 (T) + P 5 p+ys) dqi’} 
t 

Let us use the following constants: P = y = 4, 6 = 3 and 6 = 3 ( and specify 
the simulated signal as y* (5) - 1, -4 d $ g 3. It follows then from Eqs. (4.5) 

that d (t) = th (t + I), so (t) 5 1 and @ (t) z 0. Formulas (4 .6) now assume 

the form 

F* 
h (0, t d 2 

(0 = {I - (3 - $‘a -+ h (t), t > 2 

P* (z, 1) = 
h(T), t<,(2<2 
1 - (3 - ,G)*!~ + (I +eth 3)1fS, t t 2 

Since function h (t) monotonically decreases, hence it immediately follows from 

the obtained formulas that the maximum root of Eq. (3.3) is two, Maximum with re- 
spect to l in the second of formulas (4,6) obtains when t = ‘1: = 2 on element 

I = 2. Hence the optimal programmed control is U” (s 1 2) E -1. (see (2.22)). 
Thus, if at instant t = 2 we pass to the control u” (S 1 2) 5 -_1, at the fi- 

nal instant 6 = 3 we obtain the functional 

If, however, observation is continued up to instant Z > 2 

(s) az 1 ), then even with the best selection of programed 

functional y W (* I@; !I,* (*)) may reach the value (I 1 - 

1 - (3 --x)“~ > (1 + cth 3)? 

{on condition that YS* 

control zP(* 1~) the 

t cth 3)*‘t -l- 

Author thanks A. B. Kurzhanskii for his interest in this work and valuable advice. 
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