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The minimx problem of correction for a linearized model of controllable per~
turbed motion is considered on the assumption that the available information

is restricted to the measurement of the function of the coordinate system [1-6],
Solution of this problem —based on methods of minimax quadratic filtration
{71 and optimal control with incomplete data [8] —is brought to a form suit-
able for computer calculations.

1, Statement of the problem, Letthere be given an pn -vector cont-
rollable system and an m -vector measurement system

EO=A@®z®)+BOu+C@Hv, tt—3<t<d 8>0
yO =6z +§ (1.2)

(.1

where A (2), B (), C () and G (t)are known continuous matrices of related di-
mensions, and u = p ® isa ¢ -vector control subject to restriction
: (1.3)
u' (1) Q () u ()% < pe, Q') =0(@>0

¢

KNt = S i (s) ds)

to—3

where Q (#) is a continuous and positive definite g X ¢ matrix, and the prime
denotes transposition,
Here and below the symbol ¢.)'  denotes the integral taken over the segment
lt, — 8,1l of the related vector or scalar integrand, as is made clear in
pareatheses in (1,3), When the segment of integration {t.7]  diffess from (£,
—§, t1  wewrite <-)f. All considerations in this paper that differ from fin-
ite-dimensional are carried out in spaces that are summable with the square of func~
tions which may, possibly, have different metrics, This aspect will not be specifical-
ly mentioned below.
It is assumed that the intermediate perturbations v (-), and E (.) in systems
(1. 1) and (1, 2) are subject to constraints.

P, 8() =< (VRO +E () HOEEO»<ye &Y
R@#®=R®>0, H (t)=H@>6
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Symbols f,(-) andf (- | t)are used when it is necessary to emphasize that func-
tion F=1F(0), ty — 6 Cv<CH  Iisconsidered along segments [t, —
8,¢] and i 9] , respectively.

Definitions. The totality of those and only those vectors # = Z (f) which
are the ends of trajectories of system (1, 1) and which, by virtue of (1.2), generate the
required signal ~ ¥* (1), t, — 8 C vt by the specified control u* (1) = 0,

T<C ¢ under constraints (1,4) on the indetermined perturbations will be called
information set X* (fy = X ¢ y* ().

Note that, generally speaking, vector x = X* () may be realized not only in
the presence of the unique perturbations v,* (-), &* (-).  The totality of all poss-
ible functions {v;* (-), &™* (-)}, which by virtue of system (1.1) and (1, 2) gener-
ate signal y,* (.) and vector z will be denoted by the symbot W (y,*

(+), z). Let us determine the quantity

vt (), 2) = miE?) ') EC) () E(Ne

v{-),

W (ye* (-), @)

(1.5

and consider the constraints

W) RGO +HE ) HE) ECRS V=V (g* (1), 21O

We introduce in the analysis the set

L1

X8u(-[|X*)=UGE =% u(-])]z2es X* (t)}( )
where G is the region of attainability [1] of system (1, 1) from the state x =

z () at instant 9 over all possible v (-]9 that are subjected to the constraint
(L.6)when E(.[f) =0 withfixedcontrol u(-|t) = U (2). Here and be-~
low U (?) denotes the set of functions {u{- | #)}subjected to constraint

1.8
WO u(DE<p, > -2

Definition 1,2, The totality of those and only those functions  y. (5)
which coincide with signal y:* (s) when s<¢,andfor s> aregen-
erated by virtue of systems (1, 1) and (1. 2) (when u (-]#) = () by some quantities

v (-9, §(]9, where £ & X*(f) and v (-|#), & (.| t)are subject
to constraints (1, 6), will be called the set of admissible continuations Y (7,
¥i* (-))of signal  y,*(-).

The signal y:* (-) realized atinstant # < ¢ is to be understood as the
position of system (1,1) (when u; (-) = 0).

Definition 1,3, We callstrategy of correction Uy = Uk (3:* (-)) the
rule by which at each known position of  ¥:* () only one of the following so-
lutions is acceptable:

a) continue the observation process with zero control in system (1. 1) or
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b) discontinue observation and pass in system (1.1) to programmed control
u (-]} = U (1) dictated by strategy for the remaining time interval,

Acceptance of the process of solution by strategy Uy begins at instant of time £,

Thus, according to Definition 1.3 for each signal y* (\)e= Y (&, u,* ()
and the chosen strategy U there exists a uniquely defined instant of time Ty = T,
(¥* (-), Uy) &1z, 8] and the corresponding position of  ¥<,* (-)  in which
strategy {7, begins to operate to solution b), The indicated instant T, 18, obviously,
one and the same for all ¥ ()= Y {8, y,* {-)).

Let there be specified the functional @ (X) determined on compact sels ¥ — R"
by the condition

P (X) = max {p D) |z = X} (1.9

whereg (.)is a certain nonnegative convex function on B¢ and D is a constant d
X n-malrix. We introduce the notation

Vw10 ye* () = @ (X% (- |1) | X*B), u( e U@ (1, 10)
Tt UD) = rd 3* (N p* () EY @, w* () @1
T = T (¥* (), Up)
Function uy (- | 7,) in formula (1,11) is selected by strategy U, atinstant { =
Ta
Problem, Find the optimal minimax strategy [J,° for which with any y* (-)

EY (B, y* () the inequalities
’ - {1.12)
r* (), UD<T @ (| u* (N Yub]pe U
Vi o tels T = T * () Ui (1.13)
ry* (), Ux) < max ‘{‘i,’,‘ﬁw - 19; w (+)
Yyo) ul i)
p(YSY G e DeEl@), teln, o1
are valid, .
If {7,° is the optimal strategy, then any number 7~ such that
(1. 14)

rErE* (), U Vyr () eY O, pi))

is called the assured result of strategy IJ,° . It is shown below that an optimal strategy
U.° that entails inequalities (1. 12) and {1, 13) can be always derived,
Note that condition (1, 13) considered for ¢ = Ty  implies the equalily

P* () U) = min W (] T g () (2,15
u (- |t E U (n)

2. An a posteriori estimate of the state and the program-
med control with incomplete data, We shall present an analytical descrip~
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tion of the information set X* (f) on the assumption that system (1,1) (u (1) =

v(-)=0) is entirely observable by signal (1,2) (£ (-) = 0) along any
segment [t;, t,] & [to— 0, ¥].  Such assumption is in tum equivalent to complete
controllability of the system

f = sA )N D61, ty— <t (2.1)

which is conjugate of (1,1),
We introduce the operator

FA@=6@<S () C() BRI C ()8 (5aEmt+ &P
H1 (@A), tp—8 <ot

where S (£, 7T) is the fundamental matrix of the conjugate system (2.1) and s (v;
A (-)) is the solution of system (2. 1) with the initial condition § (¢, — §; A (+)) = 0.
it is not difficult to verify that Jt is a ‘linear self-conjugate and strictly positive-defi-
nite (coercitive) operator that transforms the space of m -vector functions, which are
summable with their square along segment [, — §,¢] , into itself, It follows from
the theory of functional analysis [9] that J! has a bounded inverse operator and, con-
sequently,that the equation  Jf), (‘) =pn(-) Isuniqudy solvable for any right-hand
side p (.).

We introduce the new scalar product of functions on the assumption that

(2.3)
) p O = A" ) Tip() !
Let  f* (¢, .) and F (¢, .) be solutions of equations
P = ur (), TR =60 SE )
where  ¥:* (-) is the position obtaining at instant 12> 1,. In the second equ-

ality of (2.4) F (¢, -) is an m X n-matrix function whose column !
(t, -)are solutions of equations.

T, ) =g'(t, +), i=1, ... n

where g' (¢, *) are columns of matrix G () S (¢, ).
The following statement is valid {71,
Lemma 2,1, The inclusion ze X (¢, y* (-)) is equivalent to the inequ-
ality
(z— 2o () P (1) (x— 2, (1)) <V — R (1) (2.9
P (t) = [F’ (ta ')7 F (t! ‘)]t (2.6)
W2 (E) = [f* (¢, <), f* (@, I — 2" (1) P (2) 24 (D)

where z, (£) is a vector determined by formula

gy () = P d@®), d () =1[f*@¢ ) F N =stfrE ) &0
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The confirmation of Lemma 2. 1 arises from the following results,

Lemma 2,2 Of all functions p, (.), &, (-)  which satisfy (almost everywhere
on [z, — §, ¢] ) the identity

—GOS DO vt E@) =T, 1), to — 0
Tt

where b{t, -y =f*( »y— F(t, )z,  are functions of the form

0 =~ R ¢ (b, B () =
CH ) b @ o6 B

. t
that yield the minimum of formula (1, 5) equal to b, ), b, ')] .
Proof. Letus consider the identity with respect to 4, ()

WERE) A+ G MENCENRIE) B (Do () +C () (5
MO+ CE CYH () A () B () H(YEC) —hy (Dt =
() BN =20 (), b N 4 e (), & (N0

Setting here 3, (.) = bz, ), we obtain the inequality
P EON2bE, 9,00 1

which, obviously, transforms functions 1 (.), 1 (.} into equalities, The lemma
is established,
Lemma 2,2 and formulas (2, 6) and (2.7) imply the equality

(2.8)
VE(y* (), @) = RE(D) + (z — 2 (1) P (1) (& — %o 1)

Note that owing to the complete observability of system (1. 1) by signal (1, 2), mat-
rix p (1) (see (2.6))is nondegenerateand the information set X * (7} is thus a nondegen~
erate  p -dimensional ellipsoid with its center at gz, (¢), The quantities F (i, 1),

(1) (.49 P(0),RF() (26)and  d (1), zo()  (2.7) are differentiab-
le functions of time ¢  [7] and satisfy the following differential equations;

D P @A)+ CORTOCOPO), 131 (@9

F{t, 1) = H(x)G(x) (2. 10}

P)—— A @PEH—PHAD—POCORIHC O X
POH+GCOHDGH, P(ty—8 =0

F@H=—W@U@W+PQE CHROHIQW d(t) + (2.11)
Gty HRyy* (@), d(t,—8 =0

MED _p,yCORIOC OO, e (2.1
"

*(r, vy = H@® y* )

d}jt(f) = £, ¥ () H? O F* (), kP (to— 8) =0

{(2.13)
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A* @) =H Q@) (y* () — G @) 2, (1)

2, =A@z )+ PPOEFOL*@), =h (2,14
Equations (2. 10), (2. 11), (2. 13) and (2, 14) completely define the dynamics of change
of the information set X* (t) (2,5).

1t is thus possible to note that the operator equations (2. 4) play only a subsidiary pa-
rt. The calculation of parameters of ellipsoid (2, 5) can be effected by direct integra~
tion of Eqs, (2.10) and (2, 11) on the basis of incoming information y* (), ty—08<C
v < ¢. Functions x,(f) and A2 (;) are determined by formulas

2,15
20 @ = P A, KO = G () HA () 1 ()t O

We pass to the solution of the problem of guidance programming, in other words of
finding a control #° (1), £ < ¢ < v < ¢ such that

min {¥ (u (-); »* (+)) l u(HE U@} = D° (y,* (+)) {2.16)

From formulas (1, 6), {1.7), {1.9), {1.10), (2. 5) and {2. 8) we have the eguality
° (ye* () =, in max{s () 2o (1) + s DB () +
st Do+ (v =K@ — 2 P )2« ) —
e* D[z Pz<<v — R (1), L= RY
a{t; ) =G DCE)RAIC)C ()8 (50
st H =UIDS (1, ®
where @* (-) is a convex function conjugate of ¢ () [10]. To determine in (2, 17) the

intrinsic maximum with respect fo  x we use the relationship
(2.18)

max {'z + (B — o Pair|a’ Po < B} = |B| 07 + 5P 19"
r>0, P=P>0,z=R*
The maximum is attained here on the element 2° = |B| (r2 4 s’ P-ts)1p-1g,

Using (2. 18) and transposing in (2. 17) the minimum with respect toy (.) and maximum
with respectto I , we finally obtain

@ (ye* () = max {s (& D @ () — p (B (5 Y= +
{conc g) (t; D}, = R
B =<s(5)BCYQI)B(CYs (e 0

g =0 — ROy (at D+
sEBEH P (4 D) — o* (D

(2.19)

where the symbol (conc g) (£ )}  denotes the upper envelope of function
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gl i.e, the smallest closed concave function which majorizes g (¢; )
The following statement is valid,
Theorem 2,1 The optimal control u° (-) in problem (2, 16) always exis-
ts and satisfies the principle of minimum

(2.21)
(P BE)w (NP =min {<s(+5 F) B ()u(NElul)e
U (&)}
where [I° is the extreme element in problem (2. 19).
Using condi‘ion (2, 21) we obtain the optimum control
(2.22)

u(t) = —pQ' (1) B (V) s (v; ) B (5 D)~
it B (5 ) 5 0.

One of the difficulties of solving problem (2, 16) is the determination of the quan-
tity (conc g) (t; ). Only in certain cases is it possible to obtain the upper envel-
ope of function g (¢; I) in explicit form, Let, for instance, function ¢ (.) be an
Euclidean norm, It is then possible to show that

(conc g) (¢ §) = (v — B2 ()= (m? () (1 —U'D) +
UP (), VT

where s1,2 (f) is the highest eigenvalue of matrix
0 8 8

Pi(®) =<DS(,9)C()RT()C() S (-, 9) DDA+
DS (t, ®) P-1(t) S (t,®) D’
In that case formula (2, 19) assumes the form

P (1) = @° (y* () = max {s(t; ) % ()) — 2. 29)

W (B (5 D)+ 0 — BB (@)% (10 () (4 — VD) + U Py )"

3. Solution of the problem of correction, Let us revert to the
problem formulated in Sect, 1. We assume that function ¢ (.) (see (1. 9)) is an Euclid-
ean norm,

Let at instant &t > ¢, position n* (+) be realized. In that position it is
possible to obtain, in spite of the assured result r* (¢) (2.23), one more number

(3.1
r* (1, t) = max {@° (y: (-)]y- ()Y (v, y* ()}, T=!

which defines the prediction of the assured result of control on the basis of information
obtained by instant . Calculating, first, r*(7, #)  forall © & [z, 8], we can
finally obtain

re’ () = min {r* (v, 1) |t < v << 8} (3.2)

and compare this quantity with 7* (?).
We form the equation
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) —r, @) =0, >t (3.3)

We call the strategy of correction [/,®  extremal, if as the instant T, = T,
(y* (+), Uy®) of observation termination for each of signals (YW,
v* () we take the smallest root of Eq. (3.3), and select function (2.22)
as the control  uy; (-|v,) imposed by strategy on segment [, 9] . The fol-
lowing statement is valid,
Theorem 3,1, The extremal strategy U,° is optimal and assures the
result

ry* (), Up) =@ @* (1) =r*(5) =7’ (1) <7°
re’ (t)y Vy* () EY @, y.* () :

(3.9

Proof, The validity of the theorem follows from the definition of strategy Uy®,
formulas (3, 1) and (3, 2) and the inequality @° (y;* () > r* (Ta), V¢ & (1o, T4). This
inequality follows in turn from that the assumption

min {@° (y* (-)) | ¢t & [to, Ta)} = r* (1) < r* (T4)

where & <{Ty,  contradicts condition »* (4;) >r,° (t;) which is satisfied in con-

formity with the definition of strategy ©,e. The assumption that r* (t,) > rs° (t)

also leads to a contradiction, since then at some instant £ = [4,,9] we have *
{T4) > e (tg) = r* (&, 1) , which is impossible,

Note that the estimate r,°(#,)  assured by strategy U,° cannot be improved
in the sense that for any instant ' [z, 0] signal y,* () = Y (¢, y * (+)) for
which

T*(E) = Q° (y* (1)) =71* (1, 1) > r,° (£)

can be obtained,

The last inequality means that, having observed signal ¥* () up to instant ¢,
no selection of programed control g (-] ) = U () in the problem considered,
can yield a better result than r.° (£,) << r* (z,).

We thus find that the instant ¢, = 1, (y* (-), Ux") of observation termination
is determined by continuous observation of signal y* (f), calculation of paramet-
ers of the information set Y% @), and also by the continuous computation of num-
bers r* (f) (2.23) and re (#) (3.2). However the assured results ry (to) may
be always derived by simpler procedures,

In fact, if r « (to) = r* (t,), it is no longer necessary to continue observa-
t%on. If, how'ever, r° {t) < r* (ty), it is possible to carry out at once observa-
tion up to the instant

o= max {t' r* (t, to) = r*o (to)} > tﬂ (3. 5)

Then along segment |z, '] a signal which may not be the worst for the ob-
server may be realized, and we can repeat the prediction procedure by comparing the
numbers  r,°(#!) and () <Cr,°(t) |, etc, until equality (3,3) is achiev~
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ed, In the latter case further observation is unnecessary, and the programmed control
(2.22) is to be applied on segment [, §]

It should be emphasized the described procedure for the determination of solution
is, first of all, aimed at obtaining the assured result 7 . (to) while the extremal strat-
egy Uy® makes it possible to exploit to the highest degree the unsuccessful from the
adversary's point of view choice of signal y* (-) = Y (9, y,* (-)) and obtain the
lowest passible value of the quantity

O° (5, () =¥ (@ (-} 1a); 45, (D

To make the reasoning in Sect, 3 completely strict we shall show the attainability
of maximum in (3, 1) and calcnlate that maximum. We revest to Egs, (2. 9)-(2. 14)
which define the dynamics of variation of set X* (£).  The initial conditions z,
(t) = P-1 (1) d (2y), A® (£,) for Egs. (2. 13) and (2. 14) are obtained from obser~
vation of signal (1. 2) on the initial segment [¢; — §, £,] It will be readily se~
en that the evolution of these quantities is uniquely determined by specifying function
f1* (D). Let us consider the set of all functions {f, (-)} specified on segment

{t, <1, t>1, and subjected to the censtraint 6.6
o (DHT ) 1 (oF v — B2 (1)

where A% (t) is determined by formuias (2, 13) and (2, 15),

Lemma 3, 1. Signaly: (-)is an admissible continuation of signal y:* (+)
Ley. (-) e Y (z, y* (-))), if and only if there exists function f, (-}  that sat-
isfies the inequality (3, 6) and such that

b (@) = G (@) 2y (@) + H @) f2 (@), t<oss @D

where g (@) is the solution of the equation
3.8
20 (@) = 4 (@) 7 (@) + P4 (@) € (@) fy (), t<asse (9

with known initial conditions % (£} = P~ (t) 4 ().
Proof, From {3.7) and (3.8) we have

Yo (@) =6 (a) S (T, ) 2o (1) — (G (@) § (-,a) PG (R (Pe"F B9
M@ et —~8<<axT

and when o <t function ¥ (@) is the same as the obtained signal y* (o) . Using
Lemma 2,2 and formulas {2, 8)-(2, 14) we conclude from this that signal (3, 9) and vec-
tor z, (t) can be actually obtained in the system (1, 1), (1. 2), fer instance, in the
presence of perturbations g, (.), §(-) indicated in Lemma 2,2 where ¢ = v and
function & (t, ) are the solution of equation

TP )=y ()G () ST ) %@

Hence, if the continuation of signal u:* (-}  is specified by formulas (3.7) and
(3. 8), such continuation is admissible, The converse assertion of the lemma is evident.



Minimax quadratic problem of motion correction 443

It follows from Lemma 3, 1 that there exists a one-to-one correspondence between
signal = (1) € Y (v, y* (+) and functions  f, (&), I C a < v . Taking
this and (2.23) into account, we rewrite formula (3, 1) in the form

(3. 10)
*(t,t) =maxmax {s (& ) 2, (&) + (-3 ) X
() Vi1
PEC)GE () i (DF—p (B (n D) 4 (v — k2 (1) —
HCYHAC) LED)E (g (1) (1 =11 + U Py (v) Dy

Using a formula analogous to the finite dimensional equality (2. 19) we obtain
(3.11)
(5 ) = max (s (t D 2o () — p (B (5 DY +

V=Bl (DA —=U) 4 VP, (5L 4 <s (-3 ) PY+) X
G C)YHE)GC) PG s (5 D)

The expression in (3. 10) has obviously a maximum with respect to f1 (+). , which
shows that maximum is attainable in (3. 1). Formula (3.11) shows that function r*
(v, £) is continuous with respect to variablest, t (£, <C t<CT<C 9).
Thus the procedure of acceptance of soliition of extremal strategy U®  reduces
to the following sequence of operations which must be continuous in time,
1°. Determination of parameters of ellipsoid X* (£),i.e. of quantities P-* (f),
Zy (¢) and A2 (f), by solving the related differential equations (2, 10), (2. 11) and (2.
13).
2%, Calculation of the quantities r* (), r* (1, ¢) and 7,°(#) by formulas
(2.23), (3.11) and (3, 2) respectively,
( 8%s Determination of the minimum root of Eq. (3,3) by comparing r* (1) and r,?
z).
In practice the described procedure is realized on a computer in the form of a dis-
crete scheme with a small time step.
4, Example, Letus consider a one-dimensional system whose state z (¢)
is measured under conditions of some interference

L] 4.
z =u-t o, —0<t<Y, 6>0 (4. 1)

yO)y=zxz@)+ & (4.2)

Perturbations » (-}, £ (*) and the control u (-) are constructed by (4. 3) and con-
dition (4, 4) respectively, 8

{ 2@ +eEnassv (4.)
3
8
{ wras <pe (4.9)

—8
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In this example Eqs, (2, 9)~(2. 14) assume the form
pP=1—p% p(—8=0 .9
d)=—pd@®+y* (1), d(—8 =0
ar? (Dldt = f*2 (1), fi* () = y* 1) — 2 (1), B (—0) =0
z' (1) = p7 () A* (), 2o () = pL(8)d (1)

From this we find that p (¢) = th (¢ -+ §). In this case formulas (2, 23) and (3. 11)
are of the form

™ (1) = Q° (y*(-)) = max {| 2o () | — p (& — ', O} + (+* — (4.6)

ho(e) " (& — ¢+ pt (2D

r¥(t, ) = max ¥
<t

{la:o(t) 1] (=) (vi— B2 (t})‘fe(ﬂ v P (v) + B2 S 2%s) ds)”’}
t

Let us use the following constants: p=v=1,98=3 and §=1, and specify
the simulated signal as y* () =1, —1 s 3. It follows then from Eqgs. (4. 5)
that d () =th(t+ 1), ze (=1 and A% (1) = 0. Formulas (4 . 6) now assume
the form
A, <2
ro={ e,
A, <t <2
T = {1 — (3 —0" 4 (1 +cth 3 =2

A = (3 —1t+ecth ¢+ 1)

Since function A (1) monotonically decreases, hence it immediately follows from
the obtained formulas that the maximum root of Eq. (3.3) is two, Maximum with re-
spect to ! in the second of formulas (4, 6) obtains when =71 =2 on element
! = 1. Hence the optimal programmed control is v° (s | 2y = —1. (see (2.22)).

Thus, if at instant = 2 we pass to the control »° (s|2) = —1, at the fi-
nal instant § = 3 we obtain the functional

¥ (u° (- | 2); w* (+)) = (1 — cth 3)"

1f, however, observation is continued up to instant T >» 2 (on condition that yo¥
(s) = 1), then even with the best selection of programed control u° (- |1) the
functional ¥ (u° (- |1); y.* (-))  may reach the value (1 + cth 3)"* +

1 — (38 —1)""> (1 4 cth 3)"
Author thanks A, B. Kurzhanskii for his interest in this work and valuable advice,
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